Бұрғылау бағанасының элементтерінен болған апаттар.

Апат аяқталған соң геолого-технологиялық тізім, өндірістік инструкциямен қосымша маманның геолого-техникалық көрсеткішімен қалыпты жағдайға келтіру сәті есептеледі.

Апаттың пайда болу сипатына қарай оларды келесі топтарға бөлінеді.

  1. Бұрғылау бағанасының элементтерінен болған апаттар.
  2. Бұрғы құбырының үзілуі.
  3. Қамалмен болған апаттар.
  4. Бұрғылау және отырғыш бағаналарының ілесуі.
  5. Отырғыш бағана мен оның жабдықтың элементерімен болған апаттар.
  6. Сәтсіз цементтеуден болған апат.
  7. Двигательдің бөгде заттардың түсіп кетуі.
  8. Ұңғымаға бөгде заттардың түсіп кетуі.
  9. Басқа да апаттар.

Бұрғылау бағанасының элементтерінен болған апаттарға ұңғымада бұрғылау бағанасының немесе төменгі жинақтың элементтерінің қалып қоюы жатады, яғни реерлік бөлігінің сынығы немесе үзіліс, қыздыру тігісінен сынықтары қыздыру денесінен әкелуші түтіктің сынықтары, жинақтағыш элементерінің сынықтары.

Адам өліміне алып келетін, сонымен қатар I және II категорияға жататын барлық апаттардың хаттамасы тез арада бұрғылау ұйымының басшысына жіберіледі-мемлекет қалалық техникалық бақылау инспекцияясы мен оған бірігетіндерге сонымен қатар жергілікті прократура органдарына жатады

Бұрғылау кезіндегі апаттарды анықтау және олардың жіктемесі, апаттарды есепке алу, жою және оның алдын алу жұмыстарын ұйымдастыру.

Апат деп алдын-ала ескерілмеген жобаларды ұңғыманың үзіліссіз техникалық құрылыс процесін бұзуға алып келетін, оның арнайы жүргізу жұмысын жоюды талап ететін жағдайда айтады. Апаттар ұңғыманың элементтеріне сызықтардың түсуінен, бұрғылау және отырғызғыш бағаналарының сәтсіз цементтелуінен, фонтанның ашық болуынан, ұңғымаға әртүрлі заттардың түсуінен болуы мүмкін. Аппаттар жалпы және жеке бөліктеріне бөлінеді. Өндіріс үшін апаттың зардаптардың ауырлық дәрежесіне қарай екі топқа бөлінеді. Олар жай және күрделі. Апатты жай және күрделі деп бөлудің жеке біріңғай белгісі болмайды. Тәжірибе жүзінде апаттың ауырлық жәрежесінің әдісімен сонымен қатар ұңғымадағы құрылғылар арқылы сипатталады. Жұмыс тәртібі мен еңбе ақысының өлшемін анықтайтын жою жұмыстарын өткізу уақытындағы орындаушының тәуелді апаттарды екі топқа бөлінеді.

     Апат аяқталған соң геолого-технологиялық тізім, өндірістік инструкциямен қосымша маманның геолого-техникалық көрсеткішімен қалыпты жағдайға келтіру сәті есептеледі.

     Апаттың пайда болу сипатына қарай оларды келесі топтарға бөлінеді.

  1. Бұрғылау бағанасының элементтерінен болған апаттар.
  2. Бұрғы құбырының үзілуі.
  3. Қамалмен болған апаттар.
  4. Бұрғылау және отырғыш бағаналарының ілесуі.
  5. Отырғыш бағана мен оның жабдықтың элементерімен болған апаттар.
  6. Сәтсіз цементтеуден болған апат.
  7. Двигательдің бөгде заттардың түсіп кетуі.
  8. Ұңғымаға бөгде заттардың түсіп кетуі.
  9. Басқа да апаттар.

      Бұрғылау бағанасының элементтерінен болған апаттарға ұңғымада бұрғылау бағанасының немесе төменгі жинақтың элементтерінің қалып қоюы жатады, яғни реерлік бөлігінің сынығы немесе үзіліс, қыздыру тігісінен сынықтары қыздыру денесінен әкелуші түтіктің сынықтары, жинақтағыш элементерінің сынықтары.

      Адам өліміне алып келетін, сонымен қатар I және II категорияға жататын барлық апаттардың хаттамасы тез арада бұрғылау ұйымының басшысына жіберіледі-мемлекет қалалық техникалық бақылау инспекцияясы мен оған бірігетіндерге сонымен қатар жергілікті прократура органдарына жатады.

 

20. Минерал тұздардың түзілімдері және күрес әдістері.

 

Тұздардың бөлінуі – қабатта, ұңғымада, құбыр тізбектерінде және мұнай дайындау қондырғысының жабдықтарында су қозғалысының барлық бағытында жүреді.

Тұздар сағадан 150-300 м аралығында қашықтықтағы көтергіш құбырлардың жоғарғы бөлігінде бөлінеді. Нәтижесінде жұмыс реагентінің қысымы жоғарылайды және бір уақытта толық бергіштік тоқтағанша, ұңғыма дебиті төмендейді.

Тұз бөлінуінің себептері

  • –Әртүрлі қабаттардан және горизонттардан ұңғымаға келетін сулардың химиялық бірікпеуі (сілтілік сулардың қатты сулармен);
  • –Термодинамикалық шарттардың өзгеруі кезінде сулы-тұздар жүйесінің қанығуы.

Тұздардың негізгі компоненттері – гипс немесе магний карбонаты, кремний тотығы жоғарылап, жабысу беріктігі өседі.

Гипс өткізгіштігі өте жоғары жарықшақты- қабаттарда түзіледі. Мұндай шешімдер гидродинамикалық зерттеулердің нәтижелерінде және қарқынды түрде суландырылған аймақтағы қайталап бұрғыланған ұңғылардан алынған тау жынысы үлгілерінің химиялық құрамын зерттеулерінен алынған.

 

Сур.7–Терең сорапты ұңғыда гипстің түзілу аймағы.

 

Қабат және мұнаймен ілеспелі түрде  өндірілетін сулар химиялық құрамы әртүрлі болатын суда еритін тұздардың күрделі ерітінділері болып келеді. Қабат суларында негізгі компоненттерден басқа өте аз мөлшерде көмірсутекті газдар, СО2  және басқа да газтәріздес заттар болады. Кез келген қатты зат суда ерітінді өзінің шектік немесе тепе-теңдік концентрациясына жеткенге дейін еритіні белгілі. Кей жағдайларда қарапайым түрде сілтілі суды ерітінділермен араластыруда түздардың тұнбасын, әсіресе кальций карбонатын көруге болады.

Сонымен, тұздарды тұнба болып бөлінуіне келесі үрдістер себептер болады: булану, бірікпейтін сулардың араласуы, тау жыныстары мен газдың еруі, термобариялық шарттардың өзгеруі, судың газдануы, судың жалпы минерализациясының өзгеруі.

Өндіру ұңғыларда өнімнің көтерілуіне байланысты температура төмендейді (осы кезде кальций карбонатының еруі өседі) және қысым төмендейді (кальций карбонатының еруі төмендейді). Сондықтан, өндіру ұңғыларында және мұнайды жинау, дайындау жүйелерінде карбонатты тұнбалардың түзілу себептерін анықтау кезінде осы екі қарама-қарсы бағытталған факторлардың бірігіп өзгеруін қарастыру қажет.

Кальций карбонатының еоуіне ортаның рН реакциясы маңызды әсер етеді. Қышқылды ортада кальциттің еруі, сілтілі ортаға қарағанда жоғары. рН-тың және су сілтісінің өсуіне байланысты карбонатты тұнбалардың түзілу ықпалы жоғарлайды.

Ол СО2 еруі сулы ерітіндінің рН-нан тәуелді болуына байланысты: қышқылды орта көп болған сайын, онда екіоттегілі көміртектің еруі көп болады.

  Тұз бөлінумен күресудің барлық әдістері келесілерге  бөлінеді:

  • Тұз түсуін болдырмау әдістері;
  • Тұз бөлінуін жою әдістері.

Әдісті таңдауда бөлінудің түрлі құрамы мен құрылымы дербес келуді талап етеді. Тұздардың түсуін болдырмау үшін қолданылатын – химиялық реагенттерді қолдану (ингибирлеу) әдісі.

Қазіргі кезде БОТ түзілуінің алдын алу  үшін өңделген және қолданылатын әдістерді екі топқа бөлуге болады: реагентсіз және химиялық (сур.8).

Тұдардың түзілімін болдырмайтын реагентсіз әдістерге келесілер жатады: қабат қысымын ұстау жүйесіне сумен қамтамасыз ету етудің тиімді көзін таңдау; түзбен аса қанықан ерітінділергі магнитті, күштілі және акустикалық әсер ету; құбырлардың қорғау жабқыштарын және басқа жабдықтарды қолдану. Сонымен қатар, осы топқа мұнайды өндірудің технологиялық факторларын өзгертуге негізделген шаралар; өз уақытында қажетті судан оқшаулау жұмыстарын жүргізу; қатпарлы-біртекті емес өнімді қабаттың өткізгіштігі өте жоғары қабатшаларда судың қозғалуын шектеу;өндіру ұңғыларының түптерінде өте жоғары қысымды ұстау; хвостовиктер, диспергаторларды қолдану; қолданылатын қондырғының конструкциясын өзгерту.

Соңғы уақытта тұздар бөлінуімен күресуде газсұйықтық ағынына магниттік өріс және ультрадыбыс арқылы әсер ету әдісін қолданады. Алайда бұл тәсілдердің анықталған кемшіліктері бар. Ағынның түрлі динамикалық сипаттамаларға ие болғандықтан магниттік өріспен әсер етудің тиімділігі оның газбен қанығуынан тәуелді, өйткені олар өріс энергиясының көп бөлігін өзіне сіңіріп алады. Ағын құрамында метал тотықтарының болуы, магнит өрісі әсерінің тиімділігін төмендетеді.

Ал ультрадыбыспен  әсер ету әдісі ұңғының қабырғаларында тұздардың түзілімдерінің алдын алмайды, ол тек ғана тұзіліп қойған тұздарды жартылай жояды.Мұнай өндіруде реагентсіз әдістері кеңінен шартсыз қолдануына қарамастан, олар тұздардың түзілу үрдістерін әлсіретпейді, ол тек ғана ұңғы және жабдықтың қалыпты  жұмысын кішкене ұзартады.

Химиялық әдістер. Мұнай өндіру кезінде бейорганикалық тұздардың түзілімін болдырмау (алдын алу) тәсілдерінің белгілі, тиімді және технологиялық түрі, ол – химиялық реагенттер-ингибиторларды қолдану. Зертханалық және кәсіптік зерттеулер нәтижелерінде мұнай кен орындарында БОТ түзілімімен курес әдістерінің  мәселеріне арнайы көптеген химиялық реагенттер, оның ішінде осы түзілімдерге қарсы ингибиторлар ұсынылып, зерттелген.

Мұнай өнеркәсібінде әртүрлі міндеті бар химиялық реагенттерді пайдаланады. Олар: дэмульгаторлар, ингибиторлар, бактерицидтер және т.б. көп эффективті полифосфаттар, сульфоқышқылдар, оның тұздары, арилсульфонаттар, гексалитофосфаті және триполифосфаты, натрийдің аммофос және басқалары. Комплексондар негізінде (ПАФ-13, ДПФ-1, инкредол-1, фосфанол, СНПХ-5301) ингибиторларды 20 г/м3 дозалау арқылы толық болдырмайды. Шет елдерде дисолван 4411 және 440, серво 5348, доуфакс 1632, Р-181 реагенттерді қолданылады.

Минерал тұздардың  түзілуіне қарсы барлық белгілі ингибиторларды екі үлкен топтарға бөледі:

  • біркомпонентті, яғни белгілі түрдегі бір химиялық қосылыстан құралған;
  • көпкомпонентті, әртүрлі химиялық қосылыстардан құралған.

Көпкомпонентті ингибирлеу композициялары екі және одан да көп компоненттерден дайындалады, оларды шартты екі тірде екі топқа бөледі:

  1. Құрамында бір компонент тұз түзілуіне қарсы ингибитор болмайды. Ингибитордан басқа, осы құрамдардың ішінде неоген түрдегі беттік-белсенді заттар болады. Олар ингибирлеуші қоспаның әсерін күшейтеді немее басқа да маңыздылығы болады, бірақ ол ингибирлейтін компоненттің әсерін нашарлатпайды.
  2. Құрамында барлық компоненттер тұз түзілуіне қарсы ингибитор болп келеді.

Ингибирлеуші препараттардың көп топтары өз құрамында ингибитор ретінде конденсирленген полифосфаттар, полиакрилды қышқылдар туындысы, фосфонды қышқылда, көпатомды спирттер, фосфонды қышқылдың ерітінділері, күкірт құраушы қоспалар болады.

Қазіргі кезде тұз түзіліміне қарсы ингибиторлардың физика-химиялық сипаттамаларына талаптар бекітілген. Ең маңыздысы – тұздың бөліну үрдісіне қарсы ингибирлеудің жоғары тиімділігі, төмен қату температурасы (минус 50 0С дейін), коррозиялық белсендігінің төмен болуыулығы төмен болуы, қабат суларымен бірігуі, мұнайды дайындау үрдістеріне кері әсерінің болмауы, жақсы адсорбциялау және қабат жынысынан десорбциялау қабілеті болуы керек.

Тәжірибеде келесі ингибиторлар түрлері кеңінен қолданылады.

Полиакриламид  (ПАА) – анион типті ингибитор оның белсен ді құрамы акрил қатарындағы полимерлер болып табылады. Оның қолданудың негізі – ингибирлеу бетінде мономолекулярлы қабыршақты құру болып келеді. Ол қабыршақ тұздың түзілуіне қарсы қорғау барьері болады. Ол үшін ұңғы құрамында 10-60 г/м3 ПАА бар сулы ерітіндімен жуылады. Қабаттардың мұнай бергіштігін арттыруға байланысты ПАА-ны айдаудың тұз түзіліміне қарсы жақсы нәтижелер алу үшін ПАА-ның ерітінділерін қабатқа айдауайдау ұңғылары арқылы жүргізу керек. Осы кезде айдалатын суда ПАА-ның тиімді мөлшері 10-20 г/м3 болады.

Натрий гексаметафосфаты (NaPO3)6  және натрий триполифосфат (ТПФН). ГМФН-ды 200 литрлі сиымдылықта сығылған ауаны араластыру арқылы суда ерітіп, 1% ерітінді түрігде қолданады. Ингибиторды жылуалмастырғыштың алдында ілеспе суға 10 г/м3 есебінен сумұнай эмульсиясына мөлшерленген. Жылуалмастырғышты 4 айдан кейін ашып қарағанда кішкене қалыңдықта бо скелген қара түсті сумен тез шайылатын тұнба байқалған.

ТПФН –ді айдау кезінде тұз бөліну үрдісі баяулатылады, бірақ толығымен тоқтатылмайды.

Инкредол -1 – НТФ негізіндегі көпкомпонентті ингибитор. Оны кальций карбонаттары мен сульфаттарын болдырмау үшін ұңғыда және мұнайкәсіптік жабдықтарда қолдануды ұсынады. Ең үлкен тиімділігі реагенттің 10-20 г/м3 мөлшерінде жеткізіледі. Композицияға этиленгликоль және коррозия ингибиторы кіреді.

ПАФ -1 – органикалық фосфаттар класынан болатын анион типті ингибитор. Суда тез, жақсы ерижі, мұнай және органикалық еріткіштерде ерімейді. Ингибирлек үшін тұз түзілімінің қарқындылығына байланысты өнделетін судың 10-15мг/м3 мөлшерінде ПАФ -1 сулы ерітіндінің 0,1-1%  концентрациясы қолданылады.

                   Сур.8-  Бейорганикалық тұздардың түзілуін болдырмау әдістерінің топтамасы.

 

  Ингибиторлар келесі тәсілдермен қолданылады.

  • Мөлшерлі сораптар немесе арнайы құрылғыларды қолану арқылы жүйеге үздіксіз еңгізіп отыру;
  • Ұңғыға ингибиторды кезеңмен айдау, кейіннен оны жабдықты көтерумен немесе көтерусіз қабаттың түп аймағына ығыстыру;
  • Ұңғының құбырсыртындағы кеңістігіне ингибиторды ерітіндіні кезеңмен айдау.

Ұңғыға ингибиторды үздіксіз айдау үшін сораптың қабылдау жерінде әртүрлі мөлшерлеу құрылғыларды қолданады. Жер үстінде техникалық құралдар арқылы мөлшерлеудің белгілі бір мүмкін нұсқасы 9- суретте келтірілген.

        Сур.9- Құбыр сыртындағы кеңістік арқылы ұңғыға тұзтүзіліміне қарсы ингибиторды ұнемі мөлшерлеу сұлбасы: 1- термелмелі-станок; 2- ТС балансирінен мөлшерлеу сұлбасының жетегі; 3- мөлшерлеу сорабы; 4- ингибитор ерітіндісі үшін сиымдылық; 5- айдау желісі; 6- қосу желісі; 7- ШТС; 8- өнімді қабат.

 

  Ұңғыда түзілген тұздарды жою өте күделі мәселелердің бірі. Қазіргі кезде кез келген құрамдағы тұздардың түзілуінің алдын алу немесе оларды толығымен жоюдың әмбебп әдісі жоқ. БОТ түзілімін жою әдістерінің сұлбасы 10- суретте келтірілген.

Сонымен қатар тұнбаларды тұзқышқылының ерітіндісімен, оған қоса натрий хлорлымен немесе аммониймен термохимиялық өңдеу әдісі кездеседі. Ұңғыма бетінде қыздыру кезінде тұзды қышқылда ерітіп, ыстық қоспаны ұңғымаға айдайды. Бірақ реагент активті коррозияны тудырады, ал үрдіс қымбат тұрады. Мұнай өндіру кезінде тұздардың түсуі мұнаймен қоса қабат суын шығаруға тікелей байланысты. Қабаттан сұйықтық түп аймағына келуі, кейін ұңғыма түбінде фазалық тепе-теңдік шарттардың өзгеруіне байланысты өзгереді.

Теңіз кен орындарында тұздың бөлінуінің себебі, қабат қысымын ұстап тұру үшін айдалатын қабат суының теңіз суымен араласуында, нәтижесінде тұздардың қалыптасуына әкелетін су жүйесінің ионды тепе-теңдігі бұзылады.

      

          Сур. 10-  Ұңғыда түзілген гипсті жою әдістерінің сұлбасы.

 

Тұздардың бөлінуі көп жағдайда құбырларды ауыстыру мақсатында ұңғымалардың тоқталуына әкеледі. Кейде қалыптасқан тұздардың қабаттар қалыңдығы айтарлықтай мөлшерге жетіп, құбырлардың бос қуысын бітеп қалады. Тұздардың бөліну өсімталдығы айдау және өңдіру ұңғымаларының арақашықтығына, ілеспе судағы теңіз суының құрамына және сұйық ағынының термодинамикасына тәуелді болады.

Сондықтан практикада нақтылы кен орындар үшін қолайлы болатын экономикалық шарттарды қанағаттандыратын және тиімділігі жоғарғы әдісті таңдаған жөн.

 

21. Парафин және асфальтендердің түзілуі. Парафин шөгінділерімен күрес әдістері.

 

Мұнай және газ ұңғымаларын пайдалану кезінде СҚҚ- да парафин мөлшері болады. Мұнайда жиі парафин мөлшері болады, ол белгілі шарттарда одан бөлінеді және ұңғы түбінде, көтергіш құбырларда және мұнай өтетін барлық беттік құрылғыларда жинақталады. Мысалы, Башкирия, Татарстан, Тюмень, Маңғышлақ және т.б, кен орындарда парафин құрамы 30% жетеді.Әзірбайжан кен орындарының мұнайында, Минювдаг, Сангагалы – Теңіз – Дуванный теңіз – Булла – Песчанный аралы өз құрамында 10-нан 27% парафинге дейін болады.

Парафин қатты шекті көмірсутегілеріне жатады, оның молекуласында 18 – ден 35 дейін көмірсутегі атомдары болады, ол мұнайдан ұсақ қатты кристалдар түрінде түседі.Тығыздығы 830 – 915 кг/м3 дейін, балқу температурасы 42 – 550С өзгереді.


Мұнайда қатты парафин бөлшектері пайда болатын температура, кристалданудың басталу температурасы деп аталады және 15 – 350С аралығында болады.

Парафиннің төгілуіне оқпан бойынша ұңғы сағасына дейін қысымның төмендеуі кезінде, мұнай қозғалысының аз жылдамдығын, құбыр қабырғаларының кедір – бұдырлығын төмендету кезінде газдың ұлғаюы нәтижесінде температураның төмендеуіне мүмкіндік жасайды. Олардың шөгінділері түпті аймақта, жерасты құбырларында, шлейфте, жинақталған құбыр желісі мен резервуарлар кезінде мүмкін.

Аса қарқынды көтергіш құбырларға жатады, пайдаланудың барлық тәсілдері кезінде (фонтанды, эргазлифті, СҚҚ) құбырлардың қиылысуына және мұнай өндіруді қиындатады.

Белгілі шарттарда ол лақтырым жүйелері және коллекторларда, ұңғының түп маңы аумағында, мұнайлы қабат салқын сумен ластанған кезде оның жиналуы мүмкін.

Теңіз кен орындарында ұңғыманың лақтыру желілері төселген, негізінен теңіз түбінде және айтарлықтан ұзаққа созылған.Олардың өнімдерін желілерде суыту белгілі аудандарда парафиннің жиналуына әкеледі. Бұл желілерді тазарту үлкен қиындықтарға әкеледі, ал кейде олардың толып қалуынан мүлдем жою мүмкін болмайды.

Ұңғыларда парафинді түзілімдірдің  пайда болу заңдылықтары кейбір зерттеушілермен келесі шарттарда болатындығы белгіленген:

Түп қысымы мәні қанығу қысымынан үлкенҰңғы оқпанында түптен қысым қанығу қысымына тең болған аумаққа дейін жүйенің тепе-теңдік шарты орындалып, сұйықтың қозғалысы ғана болады. Одан кейін тепе-теңдік бұзылып, газ фазасының көлемі ұлғаяды. Ал сұйық фаза тұрақсыз болуынан одан парафин бөлінуі басталады. Сонымен, парафиннің түзілімі кез келген тереңдікте болуы мүмкін, ол ұңғының жұмыс режимінен тәуелді.

Түп қысымының мәні қанығу қысымынан кіші. Бұл жағдайда тепе-теңдік жағдайдың бұзылуы қабатта болады. Сондықтан, парафиннің бөлінуі қабатта, түптен бастап ұңғы оқпанында болады. Парафинның бөлінуі түп қысымы және температурасы критикалық мәнге дейін төмендегенде күшейеді.

Көтергіш құбырларды қысымның динамикасы және оның парафин бөлінуге әсері. Сорапты пайдалану тәсәлінде сораптың қабылдау жеріндегі қысым Рқаб мұнайдың газбен қанығу қысымынан Рқан кіші болады. Бұл жағдайда парафиннің түзілуі сораптың қабылдау жерінде немесе пайдалану тізбектің қабырғасында болуы мүмкін. Көтергіш тізбекте еекі зона пайда болады. Біріншісі – сораптың лақтыру жері: мұнда қысым күрт өседі және қанығу қысымынан көбейеді. Осы интервалда сұйық қозғалады. Екіншісі – қысымның қанығу қысымына жету немесе одан да төмендеу зонасы: мұнда парафин қарқынды түрде түзіле бастайды.

Осылардан келесілер бекітіледі:

Парафиннің болуы салмағы бойынша төменнен жоғары қарай өседі, оның шегі ұңғы сағасына жетеді; қалған көлемде мұнай, шайырлв заттар, су, механикалық қоспа заттары болады;

  • Парафиннің еру температурасы төменнен жоғары қарай төмендейді, яғни көтергіштің төменгі бөлігінде өте қатты кристаллдары түзіледі;
  • Құбырлардың парафинмен толық түзілу кезеңінде өндірілген мұнайдың 0,5-1,0% салмағы бойынша парафин түзілімі құрайды;
  • Беттің өте тұзү болуы парафинні жабысу қарқындылығыгн төмендетеді. Беттің сулануына мұнайдың құрамындағы судың дисперсілігінің дәрежесі әсер етеді. Эмульсияның дисперсілігінің жоғарлауына байланысты беттің суланыу нашарлайды;
  • Парафиннің өзінің қасиеттері түзілімнің болуына әсер етеді. Парафиннің тығыздығы өскен сайын, кристаллдардың бір-бірімен бірігуі және жабысуы күшейеді.

Кесте 1- Мұнайкәсіптік жабдықтар бетінде АШПТ пайда болу шарттары

АШПТ пайда болу шарттары

Көтергіш құбырлар диаметрі, мм

Лақтыру желісі

Резер-вуарлар

62

73

89

Штуцерден арақышықтық,м

1. Ұңғының қалыпты жұмысында парафин бөлініп басталу жеріндегі тереңдікте көтергіш құбыр бойында термодинамикалық шарттар:

қысым, МПа

температура, 0С

2. толық парафинделу уақыты, ч

3. Парафиннің еру температурасы, 0С, келесі тереңдікте, м:

0

200

400

600

4. Асфальтенің болуы, %

5. Шайырдың болуы, %

6. 20 0С кезіндегі тығыздық, кг/м3

 

 

 

 

3,6

20

76

 

 

68

72

75

77

 

 

 

 

4,4

24

118,5

 

 

73

74

75

2,08

7,18

917

 

 

 

 

3,8

24,5

142

 

 

68

69

74

75

 

 

 

 

 

 

 

 

 

65

 

 

 

2,2

7,5

 

 

 

 

 

 

 

 

 

62,5

 

 

 

2,9

7,4

 

 

 

 

 

 

 

 

 

53,8

 

 

 

1,48

930

             

 

Парафинді мұнай өндірілетін фонтанды ұңғымаларды қалыпты пайдалану, құбырлар қабырғасынан парафин шөгінділерін алмай немесе шаралар қолданбай жүзеге асыру мүмкін емес. Көтергіш құбырларды парафиннен тазарту үшін жылу әсері немесе арнайы қыстырғыштармен механикалық тазартуды қолдануға болады.Парафин жиналуына кезеңдермен құбырларды сулау әсер етеді. Бұл фонтанды ұңғымалардың кезеңді және пульсациялық жұмысы кезінде болады. Лақтырыстар арасындағы үзілістерде сұйықтың жіңішке ағындары құбыр қабырғасымен ағады.Ол жеңіл фракциялардың булануына және осыған байланысты мұнайдан парафиннің түсуін туғызады.

Құрамындағы газды біртіндеп жоғалтатын мұнай, ауыр май түзеді,оның тұтқырлығы өседі, ал оның ауыр көмірсутегілеріне қатысты ерігіштік қасиеті бар сұйық газдардың құрамы азаяды.

Ағында түзілетін парафин бөлігі, көтергіш құбырлармен ұсақ кристалдар түрінде газ көпіршіктерінің қабықтарына жабысқан кристалдар түрінде көтеріледі.

Парафинді шөгінділер майтәріздес қара массадан қатты консистенцияға дейін болып келеді, олардың құрамында парафиннен басқа айтарлықтай мөлшерде смола, майлар, сулар (ұңғылардағы суланған мұнай беретін) және минералды бөлшектер болады.

Бір уақытта мұнайдың температурасы да төмендейді, ол екі себепке байланысты:

  • мұнайдан жылудың қоршаған ұңғыманың таулы жыныстарына берілуі;
  • газ бөліну нәтижесінде мұнайдың салқындауы.

Парафин шөгу процесі адсорбциялық сипатқа ие.Сондықтан құбырлардың гидрофильді материалдармен қорғағыш жабыны құбырлардың парафин шөгінділерімен күресу үшін аса тиімді болды – олардың ішкі беттері арнайы лактармен, эмальдармен немесе әйнекпен жабылды.

Тәжірибе көрсеткендей, парафин әйнекті немесе лакпен жабылған бетке шектеулі мөлшерде түседі де, әлсіз ұсталып және ағынмен оңай шайылады. Бұл бірнеше себептермен түсіндіріледі:

  • парафин бөлшектердің арасындағы ілінісу күштерінің аздығынан;
  • жапқыштың тегіс бетімен ;
  • арна жапқыш бетінің мұнаймен нашар майлануы ;
  • -жапқыштың диэлектрлік қасиетінің арқасында, электрлік зарядтары бар парафин бөлшектері құбыр металымен әрекеттесе алмайды.

Лак бояғыш материялдар қолданылады-бакелитті, эпоксидті, бакелитті-эпокидті ЮЭЛ лагі типіндегі модификациялар.

Әйнек, эмаль және лак жабындары қышқылға, сілтілерге, қабат суларына қарсы тұратын қасиетке ие, сондықтан олар құбыр металын коррозиядан қорғайды.

Құбырдың ішін әйнектендіру технологиясы, оларды лакпен жабу технологиясы сияқты көптеген мұнай өндіруші аудандарда қолданылады.

Парафин   шөгінділерімен күрес әдістері.

Көптеген мұнай кен орындарының мұнайлары парафинді. Мұндай мұнайларда парафин құрамы (С16 Н34 тен көмірсутегілер жоғары)2% артық. Қалыпты жағдайда парафиндер – қатты кристалды заттар, ал қабаттарда олар мұнайда еріген.

Ұңғы түбінен сағаға дейін мұнайды көтеру және оның ұңғыдан газ айырғышына дейінгі қозғалысы кезінде температура мен қысым үздіксіз өзгереді. Осының нәтижесінде мұнай – еріген газ – еріген парафин жүйесіндегі теңдік бұзылады.

Үлкен газ факторы кезінде газдың бөліну нәтижесінде мұнайдың салқындауы грунтқа жылу бергіштіктің есебінде салқындатумен салыстыру бойынша ие болады. Бұл екі өзара байланысты процестер (салқындату және дегазация) мұнайдан, парафиннің қатты көміртегілерінің ұсақ бөлшектерінің ағынның аса салқын нүктелерінде түзілуін туғызады–құбыр қабырғаларында және қайта түзілген газ көпіршіктерінің айналасында.

Құбыр қабырғаларында парафин шөгінділерінің тікелей түзілу процесі әртүрлі қарқындылықпен көтергіш құбырлардың бойы мен жалғасады – ол бастаған нүктеден, ұңғы сағасына дейін қалыңдайды.

Парафин шөгінділері көтергіш құбырлардың көлденең қимасының күрт азаюына әкелуі мүмкін, соның нәтижесінде шығым азаяды және буферлік қысым азаяды, ал содан кейін көтергіш құбырлар тығындалады да фонтандау тоқтайды.

Осылайша, парафинді мұнай өндірілетін фонтанды ұңғымаларды қалыпты пайдалану, құбыр қабырғасынан парафин шөгінділерін алмай немесе қабырғаларда парафин түзілуін алдын алатын шараларды қолданбау мүмкін емес.

Көтергіш құбырларды парафиннен тазалау үшін жылулық әсер ету немесе арнайы қырғыштар мен механикалық тазартуды қолдану мүмкін.

Химиялық реагенттер ағынына қоспалар мұнайдағы парафин бөлшектерінің дисперстілігінің артуына әсер етеді. Мұндай реагенттерге мұнайда ерігіш БӘЗ жатуы мүмкін.

ХТ-48 реагентін қолдану шөгіндіні толығымен жойылмайды, дегенмен шөгінді төмендейді.

Парафин шөгінділерімен күресудің жылулық әдісінде ұңғыманың құбыр сырты кеңістігіне ыстық мұнайды (газоконденсатты), қыздырылған буды немесе  бу ауалы қоспалы кезеңді айдау жүргізіледі. Фонтанды құбырлар арнайы бу қозғалмалы қондырғы (БҚҚ) көмегімен қыздырылады. Бу  бу-қондырғысынан ұңғының құбыр сырты кеңістігіне беріледі және көтергіш құбырлар арқылы шығады. Ерітілген парафин мұнай ағынымен бетке шығарылады, бұл кезде лақтыру желісіндегі парафин де ериді.

Көтергіш құбырларды парафиннен тазалаудың бұл әдісі құбыр сырты қысымы үлкен емес фонтанды ұңғымаларда қолданылады.

Фонтанды ұңғымалардың көтергіш құбырларын парафиннен тазартудың жылулық тәсілдері қиын, себебі арнайы техникалық құралдарды және қосымша қызмет көрсету персоналын қолдануды қажет етеді.

Электродепарафинизациялау.

Ұңғының түп аймағын (ҰТА) электроқыздыру қабатқа жылу тасығыштарды – қабаттың топырақты компоненттерімен әрекеттесетін су, бу, немесе конденсатты айдаумен шектелмейді. Зерттеулер мен есептеулер нәтижелері көрсететіндей электрқыздырумен тау жыныстардың аз жылу өткізу қабілетіне байланысты тек ғана 1 м көлемдегі аймақтан аса көлем қыздырылмайды.

Ал   жылутасығышты  айдау кезінде қыздыру зонасының радиусы 10-20 м –ге дейін жетеді, бірақ ол үшін үлкен стационарлы котельді қондырғылар – бугенераторлар қажет. ҰТА кезеңмен электрлі қыздыру  кезінде ұңғыға ранайы кабель-троспен қажетті тереңдікке  қуаты бірнеше ондық кВт электрлі қыздырғышты түсіреді.

Қуатты арттыру арқылықыздырғыштың орналасу аймағында 180-200 0С- дейін температураны көтеруге болады, бірақ оның әсерінен мұнайдан кокс пайда болады.

Депарафинизациялаудың бір түрі, ол — парафин қарқынды түрде түзілетін аудандарда арнайы құрылғыларды қолдану.

Бірінші қыздырғыштардың (сур 5) конструкциясы келесілерден тұрады: орам 2, өзек 3,  жылжымалы түйісу 1, қосылғыш клеммалар 4 және 5, электр көзі 6.

Мұнда электр көзі болып сорапты-компрессорлы құбырлар болып табылады. Индикционды катушкада кернеуді отырғызылған тізбек, ал өзекке СКҚ- арқылы беріледі. Сұлбаның жұмыс шарты, ол –СКҚ-ды шегендеу тізбектен сенімді оқшаулауды қамтамасыз ету. Ол тоқтан оқшаулаушы материалдан жасалатын орталандырғыштарды (центраторы) қолдану арқылы орындалады. Электрдепарафинизациялаудың осы материалын жетілдіру кабель арқылы электр қорегі жіберілетін индукциялы қыздырғыштар боып табылады. Бұл конструкцияның жоғары сенімділігі мен қауіпсіздігін қамтамасыз етеді. Соңғы жылдары кәсіпшілікте ұңғыларды қыздыратын жаңа УЭС – 1500 типті электрлі қыздырғыш қондырғысы меңгерілді. Ол қуаты 50 кВт электр пешін 1500 м тереңдікке кабель-арқан арқылы түсіруді қамтамасыз етеді.

Бұл қондырғы түсірілген интервалда 100 0С –дейін температураны құрады, және оған автокөлікте орнатылған шоғыр (лебедка), автотрансформатор, кабель-арқанэлектр пеші кіреді. (сур 6). Автотрансформатордың міндеті – мәні электр пешін түсіру тереңдігінен тәуелді кабельдегі кернеулер шығымын компенсациялау (толықтыру).

Тәжірибеде ҰТА- да электрді қыздырғышты  қолдану арқылы түптегі температура үздіксіз қыздырудан4-5 тәуліктен кейін қалыптасатыны байқалады. Кей жағдайда қалыптасу тек ғана 2,5 тәуліктен кейін болады.

Көтергіш құбырларға жылумен әсер ету үшін оларды бу, ыстық мұнай немесе мұнайөнімдерімен қыздырады. Құбырларды фонтандауды тоқтатуынсыз автокөлікте орналасқан арнайы бу жылжымалы қондырғымен  (БЖҚ)  ысытады.

                                           

       Сур. 5- Индукциялы электр пешті қолдану арқылы депарафинизациялау кезінде ұңғы жабдығының және электрлі тармақтың сұлбасы.

 

 

                 Сур. 6- Ұңғыдағы электр қыздырғыш.

  1. Кабельді бекіткіш, 2— сымды бандаж, 3— кабель, 4— басы, 5-асбестті орам, 6— қорғасынды  құйылым, 7— бұранда, 8- клеммник, 9-қыздырғыш.

 

Бу қондырғыдан бу ұңғының құбыр сыртынындағы кеңістігіне беріліп, оларды қыздырып көтергіш құбырлар арқылы шығады. Еріген парафин мұнай ағынымен бірге жер бетіне шығады, осы кезде лақтыру желісіндегі парафинде ериді.

Парафиннен көтергіш құбырларды тазартудың бұл әдісі  құбыр сыртындағықысым көп емес фонтанды ұңғыларда қолданылады.

 Фонтанды ұңғылардың көтергіш құбырларын парафиннен жылу тәсілдері арқылы тазалау өте қиын, өйткені олар арнайы техникалық құрылғыларды және қосымша қызмет көрсету персоналын қажет етеді. Бұл тәсілдер қолайлы жағдайларда және басқа тиімді тәсілдерді  қолдануға болмайтын жағдайларда қолданылады.

Көтергіш құбырларды механикалық тазарту ұңғыларды пайдалану процесі кезінде олардың тоқтауынсыз жүргізіледі және қабырғалардан парафин шөгінділерін әртүрлі қырғыштармен қырумен аяқталады.

Соңғы уақытқа дейін көтергіш құбырлардың қабырғасынан парафин шөгінділерін жоюдың механикалық әдісі, әртүрлі конструкциялы қырғыштардың көмегімен орындалады. Көтергіш құбырларды парафиннен қырғыштармен тазалау ұңғыманы тоқтатусыз пайдалану процесінде орындалады.

Қырғыштарды құбырға сыммен түсіреді. Олардың төмен қозғалысы қырғыштардың және оларға ілінетін арнайы жүктердің ауырлық күші әсерінен (10кг–дейін) орындалады, ал жоғары қарай қырғыштарды лебедкамен көтереді.

Ұңғыманың сағалық арматурасында қырғыштарды қолдану кезінде лубрикатор сальнигімен қолданылады. Лубрикатор ұзындығы қырғыш пен жүк толығымен сиятындай болуы керек.

Қырғыштарды ұңғыға түсіру үшін және оларды көтеру үшін автоматты депарафинделген қондырғы — АДҚ қолданылады. АДҚ қондырғысы, электроқозғалтқышы бар лебедкадан және басқару станциясынан тұрады, олар арнайы будкада ұңғы қасында орналасады.

Көтергіш құбырларды парафиннен механикалық тазалау кемшіліктеріне, ұңғыны пайдалану кезінде қосымша келіспеушілік көздері болып табылады, қосымша қондырғылар әрбір ұңғыда болуы керек (сымның үзілуі, бөлек түйіндердің істен шығуы және т.б)

Мұнай өндіру кәсіпорындарында автоматизация мен телемеханизацияны дамытуда мұнай өндіруде қондырғылар мен механизмде жоғары сенімді болуы керек және үрдістер жергілікті автоматикамен қамтамасыз етілуі керек, әйнектелген құбырларды қолдану көтергіш құбырлар мен беттік құбырлардағы парафин шөгінділерін жою мәселесін сәтті шешеді.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *